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A hydrodynamic model of the process of dispersion of solids extruded by a piston from a vessel through a
narrow hole is considered. The results obtained on the basis of this model are applied to evaluate the drilling
depth at which the borehole walls begin to lose their stability.

As is well known, one way of producing wire is by squeezing out a solid material from a vessel under high
pressure [1]. If this process is conducted directly by a piston, then because of the friction near the vessel walls the
pressure will not be transferred to the hole through which extrusion is carried out. To avoid this difficulty, the vessel
is filled with a liquid and the extrusion is carried out by means of hydrostatic pressure. The extrusion occurs here only
on attaining the yield stress of the material by the hydrostatic pressure, which for softer materials is much lower than
those pressures which can be sustained by steel vessels. In [1], it is noted that this method allows one to extrude even
steel from steel vessels if the hole is sufficiently small. Moreover, the effect of interest has been revealed: with de-
crease in the hole and increase in the pressure, the metal ceases to smoothly emerge from the hole and begins to be
ejected in individual pieces. Further increase in the pressure leads to a strong heating caused by the friction. And if
the material is heated to its annealing temperature, the advantages of the extrusion process as a method of producing
wire disappear.

The phenomenon of dispersion of solid bodies in sudden relieving of uniform-compression stresses has also
been considered in [2]. In this work, it is suggested to use this phenomenon as an economical method of preparing
highly dispersed powders; threshold pressures at which the process of dispersion of the material in its fast unloading
begins are also presented in this work for a wide range of materials.

As far as we know, the process of dispersion of a solid body in its extrusion from a vessel has not yet been
investigated theoretically.

In the present work, we suggest a theoretical model of this phenomenon.
Figure 1 (taken from [1]) gives a diagram of the installation for extruding a solid material from a vessel. The

extruded material A is under the hydrostatic pressure p of liquid B. In what follows, we will assume the pressure to
be constant.

As is known from the mechanics of deformable bodies, at pressures exceeding the dynamic strength of solid
bodies, the latter change to a yield state and look like fluids. The motion of the substance at such high pressures is
described by ordinary hydrodynamic equations. In particular, in extruding the substance from a container through a
hole at a constant velocity, the Bernoulli equation is fulfilled:

u
2

2
 + ∫ dp

ρ
 = const . (1)

To expand the integral in Eq. (1), it is necessary to prescribe the equation of state of the substance. It is a
known fact [3] that in the course of compression and unloading of substances up to several hundred thousand atmos-
pheres, the change in the entropy is insignificant; therefore, the pressure depends only on the density or the volume.
In the range of pressures not exceeding the ultimate strength of a solid body, the unloading in the body is described
by formulas of elasticity theory.
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There are different empirical and semiempirical equations of state of solid bodies. In the range of pressures to
several hundred thousand atmospheres the most simple and convenient is the equation of the form

p = A 








ρ
ρ0





n

 − 1



 , (2)

in which the coefficient A and the exponent  n can be considered to be constant and related by the relation

An = ρ0c0 , (3)

where c0 = (K ⁄ ρ0)
1 ⁄ 2 at p = 0. From the data of [4], the coefficient A is equal to 4.5⋅108 for iron, 2.5⋅108 for copper,

and 2.03⋅108 kN ⁄ m2 for duralumin; for metals the exponent n can be taken to be equal to four.
Neglecting the velocity of the substance in the vessel, from equalities (1) and (2) we will have
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Hence for the maximum velocity umax of the jet the following formula is obtained:
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for ps << A umax = (2ps
 ⁄ ρ0)

1 ⁄ 2.
On leaving the hole, the substance is extended. At the site of the jet cross section where the tensile stress

reaches the ultimate tensile strength of the body, the latter is ruptured and in the case of a rather intense outflow of
the substance from the hole its spraying occurs.

Usually, because of the microscopic inhomogeneity of the material the zone of tensile stresses is smeared,
while the rupture surface is rough. However, in what follows this roughness will be neglected and it will be assumed
that the process of dispersion of the material occurs along a fixed plane cross section at the site of the flow where the
tensile stress becomes equal to the dynamic ultimate tensile strength of the material. We call this cross section the
"dispersion front" of the material and will mark the flow parameters in this cross section by an asterisk.

Upon change in the direction of deformation, the material in the extension zone acquires the capacity for elas-
tic deformation again. It can be assumed that this capacity is retained up to the onset of rupture. Thus, as the pressure
changes from p = 0 to p = −σ∗  in the extension zone of the material, the equation of state in the form of the Hooke

Fig. 1. Diagram of the installation for extruding the material under hydrostatic
pressure: A, material to be extruded; B, liquid.
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law is suitable. On the other hand, for σ∗  ⁄ A << 1 the equation of state (2) changes to the Hooke law. Hence it follows
that over the entire range of variation of the pressure from p = ps to p = −σ∗  we can use Eq. (2).

Taking into consideration the fact that at p = 0 the velocity is u = umax, from equality (1) we obtain

u
2
 = umax

2
 − 

2  p
ρ

 ,   − σ∗  ≤ p ≤ 0 . (6)

On the "dispersion front," we have the following relation:
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Hence for ps << A we will have

u
∗
 C 








2 (ps − σ∗ )
ρ0








1 ⁄ 2

 . (7′)

The condition of rupture of the material is reduced to the inequality

ρ∗ u∗
2

 ≥ σ∗  .
(8)

Using equalities (5) and (7) as well as relation (3) and the equation of state (2), we can rewrite condition (8) in the
form
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Virtually for all the solids the ratio σ∗  ⁄ A << 1 holds; therefore, we represent the last condition as
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Whence, in an acoustic approximation, when ps << A, we obtain

ps ≥ pt = 
3
2

 σ∗  , (10)

where pt is the threshold value of the pressure at which the material begins to rupture. Thus, for example, according
to [5], for steels of different grades the values of σ∗  are within the limits from 5⋅106 to 15⋅106 kN ⁄ m2, consequently,
pt C (8−23)⋅106 kN ⁄ m2; for aluminum we have σ∗  = (2−4)⋅106 kN ⁄ m2, and the corresponding value of pt is equal to
(3−6)⋅106 kN ⁄ m2. These results are in satisfactory agreement with the experimental data [2].

It should be noted that formula (10) can be used to solve the inverse problem, i.e., to determine the dynamic
tensile strength of the material. To do this, it is sufficient to find the threshold value of the pressure pt for a given
material and then to determine the quantity σ∗  from formula (10).

The dispersion of the material begins at pressures ps exceeding the threshold pressures. In this case, on the
"dispersion front" the laws of conservation of mass, momentum, and energy must be obeyed. These laws are written
in just the same way as for shock waves:

ρ∗ u∗  = ρ1u1 , (11)
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− σ∗  + ρ∗ u∗  = ρ1u1 , (12)
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 . (13)

Here ρ1 = ρ0. The quantity W can be represented in the form W = d2Nγ.
From equalities (11) and (12) it follows that
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Hence it is evident that u1 = 0 for ps = 3σ∗  ⁄ 2, while the difference of u1 from u∗  is insignificant for ps >> σ∗ , i.e., at
the pressures ps >> σ∗  the energy expended on dispersing the body is low compared to the potential energy stored in
the body.

Equality (13) can be represented in the form

umax
2

2
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W
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2

2
 .

The meaning of this equality is apparent: the potential energy of the compressed substance changes completely to the
kinetic energy of the substance per unit volume umax

2  ⁄ 2. The latter in the process of unloading of the material changes
to the kinetic energy of the particles and is also expended on dispersing the material.

We note that relation (10) is only the condition of rupture of the material, and for the material to be dis-
persed a more rigid requirement must be fulfilled.

As is well known, macroscopic bodies contain many fine cracks by which the rupture of a body occurs. Be-
cause of their existence the technical strength of solids is two to three orders of magnitude lower than the theoretical
strength, which is approximately equal to the elastic modulus E.

According to Frenkel’ [6], the minimum stress at which the crack begins to elongate (and the body to rup-
ture) is determined by the formula pmin = (2γE ⁄ d′)1

 ⁄ 2. The size of the particles formed in rupture of a solid body are
of the same order of magnitude as the size of the fine cracks contained in this body, i.e., d′ C d. Thus, for the parti-
cles of size d to be formed it is necessary that the pressure in the vessel satisfy the condition

ps ≥ 1.5pmin (d) C 1.5 




2γE
d




1 ⁄ 2

 . (15)

Hence it is evident that as the pressure preceding the unloading of the body increases, the size of the particles
formed during the dispersion of the substance decreases following the law d D 1 ⁄ ps

2.
Relation (15) closes the system of equations (11)–(13) and is used as a certain "equation of state" that relates

the pressure p to the size of the particles formed in dispersion of bodies.
To orient ourselves in the values of the parameters determining the process of dispersion of solid bodies, we

consider the data for iron:  σ∗  = 4⋅108 N ⁄ m2, c0 = 4.63⋅103 m ⁄ sec, E = 3.4⋅1011 N ⁄ m2, γ = 1 J ⁄ m2,  and
ρ0 = 7.5⋅103 kg ⁄ m3.  We set  ps = 4σ∗  = 109 ⁄ 6 N ⁄ m2. Then we will  have umax = 600 m ⁄ sec, u1 C 500 m ⁄ sec, and
d D 0.25 µm.

The results obtained above can be used in geophysics.
As is well known [7], the depth of the largest boreholes on the continents is 8 to 9 km, while the Kola su-

perdeep borehole is 13 km in depth. The mining pressure from the overlying rocks at a depth of H is determined by
the formula p1 = ρ

__
gH, where ρ

__
 is the mean density of the overlying rocks. On the average, ρ

__
g = 3.5⋅104 N ⁄ m3. Thus,

at a depth of 10 km the pressure p1 is 3.5⋅108 N ⁄ m2. Such high pressures are already sufficient for the spontaneous
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process of dispersion of rocks to develop, i.e., for the borehole walls to lose their stability, at faces during superdeep
drillings.

The process of extrusion of a substance from a face into a borehole is quite similar to the above-considered
process of extrusion of a substance from a vessel: the granite layer of the continental earth crust of thickness H plays
the role of vessel walls, while instead of ps we have the mining pressure p1 = ρ

__
gH.

The depth H∗ , at which the stability of the borehole walls is lost, can be determined by the equality
ρ
__

gH∗  = 3σ∗  ⁄ 2, i.e., H∗  = 3σ∗  ⁄ (2ρ
__

g), where σ∗  is the dynamic tensile strength of the rocks.
On the other hand, in [8], for the initial depth of cavern formation the formula H∗  = 2σc

 ⁄ (ρ
__

g) has been ob-
tained by the methods of elasticity theory; in this formula, σc is the empirical constant selected in such a way that in
the investigated range of stresses the theoretical value of the quantity H∗  coincides with the value determined experi-
mentally.

If we set σc = 3σ∗  ⁄ 4, both results for H∗ , which are found by quite different methods, coincide.
Below the depth H∗ , the rock ground at the face loses its stability, changes to the yield state, and ceases to

exhibit resistance to shear deformation. The boring tool at the face will not experience resistance. The depth H∗  is de-
termined as the limiting depth of the borehole and depends mainly on the dynamic tensile strength of the rock.

NOTATION

u, velocity; p, pressure; ρ, density of the substance; ρ0, density of the substance at p = 0; A, empirical con-
stant; c0, velocity of the plastic waves at p = 0; K, modulus of uniform compression; ps, initial pressure in the vessel;
n, adiabatic exponent; umax, maximum velocity of outflow of the substance from the hole; σ∗ , ultimate tensile strength
of the material; u∗ , velocity on the "dispersion front"; ρ∗ , density on the "dispersion front"; pt, threshold pressure in
the vessel at which the material is dispersed; ρ1, density of the particles formed in dispersion of the material; u1, mean
velocity of the particles formed in dispersion of the material; W, energy required for dispersion of a unit volume of
the substance; N, number of particles in the unit volume; γ, surface energy of the dispersed material; d, mean size of
the particles; E, Young modulus; d′, size of the cracks in the material; pmin, minimum stress at which the crack in the
material elongates; p1, mining pressure; g, acceleration of gravity; H, depth of occurrence of the rock; H∗ , critical
depth of the boreholes at which the borehole walls lose their stability; σc

∗ , empirical constant having the dimension of
stress.
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